Skip to content

Configuration Analysis Report

Microsoft Hackathon 2025 - Agentic Coding Framework

Generated: 2025-10-06


Executive Summary

This report provides a comprehensive analysis of the configuration structure for the Microsoft Hackathon 2025 Agentic Coding Framework (amplihack). The project uses a multi-layered configuration approach with YAML, JSON, and ENV files managing different aspects of the system.

Key Findings:

  • 3 YAML configuration files for LiteLLM proxy management
  • 4 JSON files for Python tooling and data
  • 3 ENV files for environment-specific settings
  • Configuration spans AI model integration, type checking, and proxy infrastructure

Configuration Inventory

YAML Configuration Files (3 files)

  1. Specs/xpia_defense_api.yaml
  2. Location: /Specs/xpia_defense_api.yaml
  3. Purpose: API specification for XPIA (Cross-Prompt Injection Attack) defense
  4. Category: Security/API specification

  5. litellm_optimized_config.yaml

  6. Location: Root directory
  7. Purpose: Optimized LiteLLM proxy configuration
  8. Category: AI Model Proxy

  9. litellm_standalone_config.yaml ⭐ (Analyzed in detail)

  10. Location: Root directory
  11. Purpose: Standalone LiteLLM proxy configuration
  12. Category: AI Model Proxy (Primary)

JSON Configuration Files (4 files)

  1. src/amplihack/utils/uvx_settings_template.json
  2. Location: /src/amplihack/utils/
  3. Purpose: UVX settings template
  4. Category: Utility configuration

  5. pyrightconfig.json ⭐ (Analyzed in detail)

  6. Location: Root directory
  7. Purpose: Pyright type checker configuration
  8. Category: Development tooling

  9. baseline_results.json

  10. Location: Root directory
  11. Purpose: Baseline test/benchmark results
  12. Category: Testing/Validation

  13. test-data.json

  14. Location: Root directory
  15. Purpose: Test data for development
  16. Category: Testing

ENV Configuration Files (3 files)

  1. examples/example.azure.env
  2. Location: /examples/
  3. Purpose: Azure environment configuration template
  4. Category: Cloud integration example

  5. examples/example.github.env

  6. Location: /examples/
  7. Purpose: GitHub integration configuration template
  8. Category: CI/CD example

  9. amplihack_litellm_proxy.env ⭐ (Analyzed in detail)

  10. Location: Root directory
  11. Purpose: Active LiteLLM proxy environment configuration
  12. Category: AI Model Proxy (Active)

Detailed Configuration Analysis

1. LiteLLM Proxy Configuration

Primary File: litellm_standalone_config.yaml

Architecture Pattern: Standalone proxy mode with Azure OpenAI integration

Key Components:

Model Configuration

  • Model Name: gpt-5
  • Provider: OpenAI via Azure
  • API Endpoint: https://ai-adapt-oai-eastus2.openai.azure.com/openai/v1/responses
  • Max Tokens: 512,000 (extremely high capacity)
  • Timeout: 300 seconds
  • API Key: Embedded (masked in analysis)

General Settings Philosophy

The configuration demonstrates a "simplicity-first" approach:

  • Database features: DISABLED (store_model_in_db: false)
  • Authentication: DISABLED (disable_auth: true)
  • Telemetry: DISABLED (telemetry: false)
  • Spend logging: DISABLED (disable_spend_logs: true)
  • Key name checks: DISABLED (disable_key_name_checks: true)

Rationale: This appears to be a development/hackathon configuration prioritizing quick setup over production security. The disabled features avoid "No connected db" errors and API key complexity.

LiteLLM Settings

  • Verbosity: Minimal (set_verbose: false)
  • Parameter handling: Permissive (drop_params: true)
  • Callbacks: Empty arrays (no logging/monitoring hooks)

Security Note: API keys are visible in configuration (marked with # pragma: allowlist secret for linting bypass)


2. Environment Configuration

Primary File: amplihack_litellm_proxy.env

Purpose: Runtime environment configuration for the LiteLLM proxy integration

Proxy Architecture

  • Proxy Type: litellm_standalone
  • Proxy Mode: external
  • Host: 127.0.0.1 (localhost)
  • Port: 9001

OpenAI/Azure Integration

OPENAI_API_KEY=proxy-key
OPENAI_BASE_URL=https://ai-adapt-oai-eastus2.openai.azure.com/openai/v1/responses?api-version=preview

Design Decision: Using Azure Responses API endpoint with preview API version, suggesting cutting-edge features are being utilized.

Performance Tuning

  • Max Tokens: 512,000 (matches YAML config)
  • Min Tokens: 4,096
  • Request Timeout: 300 seconds
  • Max Retries: 2
  • Log Level: INFO

Model Mappings

All model size variants point to the same model:

  • BIG_MODEL=gpt-5
  • MIDDLE_MODEL=gpt-5
  • SMALL_MODEL=gpt-5

Implication: Simplified model strategy using a single high-capacity model for all tasks.

Feature Flags

  • AMPLIHACK_USE_LITELLM=true - Enables integrated proxy functionality

3. Python Type Checking Configuration

Primary File: pyrightconfig.json

Purpose: Configure Pyright static type checker for Python codebase

Exclusions

Standard development artifacts:

  • node_modules/
  • __pycache__/
  • .venv/, venv/

Ignored Paths (Strategic Decisions)

The project explicitly ignores type checking for:

  1. src/amplihack/bundle_generator - Bundle generation utilities
  2. src/amplihack/cli_extensions.py - CLI extension code
  3. src/amplihack/security/cli.py - Security CLI
  4. src/amplihack/proxy/responses_api_proxy.py - Proxy implementation
  5. tests/ - Test suite
  6. .claude/ - Claude AI configuration
  7. Specs/ - Specification files
  8. scripts/ - Utility scripts

Analysis: The ignored paths suggest:

  • Rapid development on proxy and security features
  • Type safety not enforced in experimental/utility code
  • Focus on core framework type safety

Type Checking Settings

  • Missing Imports: ENABLED (reportMissingImports: true)
  • Missing Type Stubs: DISABLED (reportMissingTypeStubs: false)
  • Python Version: 3.11
  • Platform: All (cross-platform support)

Philosophy: Pragmatic type checking - catch import errors but don't block on missing stubs from third-party libraries.


Configuration Architecture Patterns

1. Multi-Layer Configuration Strategy

Layer 1: ENV files → Runtime environment variables
Layer 2: YAML files → Structured service configuration
Layer 3: JSON files → Tooling and data configuration

Benefits:

  • Separation of concerns (runtime vs. structure vs. tooling)
  • Easy environment switching (dev/staging/prod)
  • Clear configuration ownership

2. Security Posture

Current State: Development/Hackathon Mode

Security features DISABLED:

  • Authentication bypassed
  • Database logging disabled
  • Telemetry off
  • API keys in plaintext (with linting pragmas)

Recommendation for Production:

  • Enable authentication layers
  • Implement secure key management (Azure Key Vault)
  • Enable audit logging
  • Add rate limiting
  • Implement database persistence

3. AI Model Integration Pattern

Chosen Architecture: Standalone LiteLLM Proxy

Design Advantages:

  • Decoupled model provider (easy to swap Azure → OpenAI → Anthropic)
  • Centralized token management
  • Unified API interface
  • Built-in retry/timeout handling

Configuration Flow:

amplihack → ENV config → LiteLLM Proxy (port 9001) → Azure OpenAI Responses API

4. Type Safety Philosophy

Approach: Selective type checking

  • Core framework: Type-checked
  • Experimental features: Type-checking relaxed
  • External interfaces: Import validation enforced

This allows rapid prototyping while maintaining core stability.


Configuration Health Assessment

✅ Strengths

  1. Clear separation of concerns across file types
  2. High token capacity (512K) enables complex AI interactions
  3. Pragmatic type checking balances safety and velocity
  4. Flexible proxy architecture allows provider swapping
  5. Well-documented with inline comments explaining decisions

⚠️ Areas for Improvement

  1. Security hardening needed before production
  2. Enable authentication
  3. Implement secret management
  4. Add audit logging

  5. Configuration validation could be automated

  6. Add schema validation for YAML files
  7. Validate ENV file completeness on startup
  8. Type-check configuration loading

  9. Model diversity currently limited

  10. All model sizes point to gpt-5
  11. Consider adding smaller models for simple tasks
  12. Implement intelligent model routing based on task complexity

  13. Error handling in configuration loading not visible

  14. Add graceful degradation
  15. Provide clear error messages for misconfigurations
  16. Implement configuration health checks

  17. Documentation could be enhanced

  18. Add configuration schema documentation
  19. Create configuration migration guides
  20. Document environment variable precedence

Configuration Dependencies

Critical Path Dependencies

amplihack_litellm_proxy.env
    ↓ (requires)
litellm_standalone_config.yaml
    ↓ (defines)
Azure OpenAI Responses API
    ↓ (provides)
gpt-5 model access

Development Tool Dependencies

pyrightconfig.json
    ↓ (configures)
Pyright type checker
    ↓ (validates)
Python 3.11 codebase

Recommendations

Immediate Actions

  1. Create configuration validation script
  2. Validate YAML syntax
  3. Check ENV variable completeness
  4. Verify API endpoint reachability

  5. Document configuration precedence

  6. ENV variables override YAML
  7. Document which settings can be overridden
  8. Create configuration hierarchy diagram

  9. Add configuration examples

  10. Production-ready configurations
  11. Local development setup
  12. CI/CD environment configs

Short-term Improvements

  1. Implement configuration profiles
  2. Development profile (current state)
  3. Staging profile (partial security)
  4. Production profile (full security)

  5. Add model routing intelligence

  6. Use smaller models for simple tasks
  7. Route to gpt-5 only when needed
  8. Track cost/performance metrics

  9. Enhance type checking coverage

  10. Gradually add types to ignored paths
  11. Create type stubs for custom modules
  12. Enable stricter type checking incrementally

Long-term Strategy

  1. Migrate to centralized configuration service
  2. Azure App Configuration
  3. AWS Parameter Store
  4. HashiCorp Vault

  5. Implement dynamic configuration

  6. Hot-reload configuration changes
  7. Feature flags for A/B testing
  8. Runtime configuration updates

  9. Add configuration observability

  10. Log configuration changes
  11. Monitor configuration health
  12. Alert on invalid configurations

Conclusion

The configuration structure of the amplihack framework demonstrates a pragmatic, hackathon-appropriate approach prioritizing rapid development and flexibility. The multi-layered configuration strategy (ENV/YAML/JSON) provides clear separation of concerns, while the standalone LiteLLM proxy architecture offers excellent flexibility for AI model integration.

Overall Assessment: B+

Strengths: Well-organized, flexible, documented Weaknesses: Security hardening needed, limited model diversity, validation gaps

The configuration is production-ready with modifications. Primary focus should be security hardening (authentication, secret management, audit logging) before deploying beyond development environments.


Appendix: Configuration File Manifest

Complete File Listing

YAML Files (3):

  1. /Users/ryan/src/hackathon/MicrosoftHackathon2025-AgenticCoding/Specs/xpia_defense_api.yaml
  2. /Users/ryan/src/hackathon/MicrosoftHackathon2025-AgenticCoding/litellm_optimized_config.yaml
  3. /Users/ryan/src/hackathon/MicrosoftHackathon2025-AgenticCoding/litellm_standalone_config.yaml

JSON Files (4):

  1. /Users/ryan/src/hackathon/MicrosoftHackathon2025-AgenticCoding/src/amplihack/utils/uvx_settings_template.json
  2. /Users/ryan/src/hackathon/MicrosoftHackathon2025-AgenticCoding/pyrightconfig.json
  3. /Users/ryan/src/hackathon/MicrosoftHackathon2025-AgenticCoding/baseline_results.json
  4. /Users/ryan/src/hackathon/MicrosoftHackathon2025-AgenticCoding/test-data.json

ENV Files (3):

  1. /Users/ryan/src/hackathon/MicrosoftHackathon2025-AgenticCoding/examples/example.azure.env
  2. /Users/ryan/src/hackathon/MicrosoftHackathon2025-AgenticCoding/examples/example.github.env
  3. /Users/ryan/src/hackathon/MicrosoftHackathon2025-AgenticCoding/amplihack_litellm_proxy.env

Total Configuration Files: 10


Report generated by amplihack configuration analysis system For questions or clarifications, refer to .claude/context/ documentation