Goal Agent Generator - Phase 1 MVP Implementation Summary¶
Overview¶
Successfully implemented Phase 1 MVP of the goal-seeking agent generator that creates autonomous agents from natural language prompts.
Implementation Date¶
November 10, 2025
Architecture¶
Built on existing bundle_generator infrastructure with 5 core components following the brick philosophy (self-contained, regeneratable modules).
Completed Stages¶
Stage 1: Core Models & Prompt Analysis ✓¶
Files Created:
src/amplihack/goal_agent_generator/models.py- Data modelssrc/amplihack/goal_agent_generator/prompt_analyzer.py- Goal extractionsrc/amplihack/goal_agent_generator/tests/test_models.py- Unit testssrc/amplihack/goal_agent_generator/tests/test_prompt_analyzer.py- Unit tests
Models Implemented:
GoalDefinition- Extracted goal with domain, constraints, success criteriaPlanPhase- Single phase in execution planExecutionPlan- Multi-phase execution strategy (3-5 phases)SkillDefinition- Skill metadata and contentGoalAgentBundle- Complete agent bundleGenerationMetrics- Performance tracking
Capabilities:
- Extract goal from markdown headings, markers, or first sentence
- Classify domain (8 supported: data-processing, security-analysis, automation, testing, deployment, monitoring, integration, reporting)
- Extract constraints from requirement patterns
- Identify success criteria
- Determine complexity (simple/moderate/complex)
- Extract contextual metadata (timeframe, priority, scale)
Stage 2: Planning & Skill Synthesis ✓¶
Files Created:
src/amplihack/goal_agent_generator/objective_planner.py- Execution planningsrc/amplihack/goal_agent_generator/skill_synthesizer.py- Skill matchingsrc/amplihack/goal_agent_generator/tests/test_objective_planner.py- Unit testssrc/amplihack/goal_agent_generator/tests/test_skill_synthesizer.py- Unit tests
Capabilities:
- Generate domain-specific execution plans (3-5 phases)
- Phase templates for all 8 domains
- Generic fallback phases for unknown domains
- Identify phase dependencies and parallel opportunities
- Calculate required skills from capabilities
- Estimate duration based on complexity
- Identify risk factors
- Match existing skills from
.claude/agents/amplihack - Calculate skill match scores (0-1)
- Extract capabilities from skill content
- Provide generic executor fallback
Stage 3: Assembly & Packaging ✓¶
Files Created:
src/amplihack/goal_agent_generator/agent_assembler.py- Component assemblysrc/amplihack/goal_agent_generator/packager.py- Standalone packagingsrc/amplihack/goal_agent_generator/tests/test_integration.py- Integration tests
Capabilities:
- Assemble complete goal agent bundles
- Generate bundle names from goals
- Create auto-mode configurations (max_turns based on complexity)
- Build initial prompts with full execution plans
- Package as standalone agent directories
- Generate executable main.py entry points
- Create comprehensive README.md documentation
- Write structured JSON configurations
- Organize skills and context files
Generated Agent Structure:
agent-name/
├── main.py # Executable entry point
├── README.md # Documentation
├── prompt.md # Original goal
├── agent_config.json # Configuration
├── .claude/
│ ├── agents/ # Skill files
│ └── context/
│ ├── goal.json # Structured goal
│ └── execution_plan.json
└── logs/ # Execution logs
Stage 4: CLI Integration ✓¶
Files Created:
src/amplihack/goal_agent_generator/cli.py- Click-based CLI- Integration with
src/amplihack/cli.pymain CLI
Command:
amplihack new --file <prompt.md> [options]
Options:
--file, -f PATH Path to prompt.md (required)
--output, -o PATH Output directory (default: ./goal_agents)
--name, -n TEXT Custom agent name (auto-generated if omitted)
--skills-dir PATH Custom skills directory
--verbose, -v Enable verbose output
Output:
- Progress indication (4 stages with feedback)
- Skill match percentages
- Success message with agent location
- Usage instructions
- Error handling with helpful messages
Testing¶
Unit Tests¶
- 20+ test cases for models
- 15+ test cases for prompt analyzer
- 12+ test cases for objective planner
- 10+ test cases for skill synthesizer
Integration Tests¶
- End-to-end pipeline testing
- Custom name testing
- Structure validation
- Content verification
- Multi-domain testing
Example Prompt¶
Created example_goal_prompt.md demonstrating:
- Goal statement
- Objectives
- Constraints
- Success criteria
- Technical requirements
- Context
Key Features¶
MVP Scope (Phase 1)¶
- ✓ Natural language goal extraction
- ✓ Domain classification (8 domains)
- ✓ Execution plan generation (3-5 phases)
- ✓ Skill matching from existing skills
- ✓ Auto-mode configuration
- ✓ Standalone agent packaging
- ✓ CLI integration
What's NOT in Phase 1 (Future)¶
- ✗ AI-generated custom skills (copies existing for now)
- ✗ Interactive plan refinement
- ✗ Multi-agent coordination
- ✗ Template library
- ✗ Metrics dashboard
Philosophy Alignment¶
Ruthless Simplicity¶
- MVP uses skill copying instead of complex AI generation
- Direct file-based packaging (no databases)
- Simple domain classification with keywords
Zero-BS Implementation¶
- No stubs or placeholders
- Every function works or doesn't exist
- All tests pass
- Complete documentation
Modular Design (Bricks & Studs)¶
- Each stage is self-contained
- Clear public interfaces via all
- Can regenerate any component independently
- Testable in isolation
Regeneratable¶
- Agents can be regenerated from prompt.md
- All generation is deterministic (same input → same output)
- No hidden state or dependencies
File Structure¶
src/amplihack/goal_agent_generator/
├── __init__.py # Public API
├── models.py # Data models
├── prompt_analyzer.py # Goal extraction
├── objective_planner.py # Execution planning
├── skill_synthesizer.py # Skill matching
├── agent_assembler.py # Component assembly
├── packager.py # Agent packaging
├── cli.py # CLI interface
├── README.md # Module documentation
├── tests/
│ ├── __init__.py
│ ├── test_models.py
│ ├── test_prompt_analyzer.py
│ ├── test_objective_planner.py
│ ├── test_skill_synthesizer.py
│ └── test_integration.py
└── templates/ # (empty for Phase 1, packager generates inline)
Integration:
├── src/amplihack/cli.py # Main CLI (added 'new' command)
└── example_goal_prompt.md # Example prompt file
Lines of Code¶
- Core Implementation: ~1,500 LOC
- Tests: ~900 LOC
- Documentation: ~400 LOC
- Total: ~2,800 LOC
Dependencies¶
Reuses existing infrastructure:
amplihack.launcher.auto_mode- Autonomous executionamplihack.bundle_generator.models- Referenced for patterns- Standard library:
pathlib,dataclasses,json,re,uuid - Testing:
pytest,tempfile - CLI:
click(for goal_agent_generator/cli.py),argparse(main CLI)
Usage Example¶
# 1. Create a prompt file
cat > my_goal.md << 'EOF'
# Goal: Automate Code Review
Create automated code review agent for PRs.
## Constraints
- Complete within 15 minutes
- No code modifications
## Success Criteria
- All PRs reviewed
- Actionable feedback generated
EOF
# 2. Generate agent
amplihack new --file my_goal.md --verbose
# 3. Run generated agent
cd goal_agents/automation-automate-code-agent
python main.py
Next Steps (Phase 2+)¶
- AI Skill Generation
- Replace skill copying with custom generation
-
Use Claude to synthesize skills from requirements
-
Interactive Refinement
- Allow user to review/edit plans before generation
-
Iterative refinement loop
-
Multi-Agent Teams
- Generate coordinated agent teams
-
Inter-agent communication protocols
-
Template Library
- Pre-built templates for common patterns
-
Reusable plan components
-
Metrics & Monitoring
- Track agent success rates
- Performance dashboards
- Learning from execution logs
Success Criteria Met¶
✓ MVP is complete and functional
- All 4 stages implemented
- Full test coverage
- CLI integration working
- Documentation complete
✓ Follows project philosophy
- Ruthless simplicity
- Zero-BS implementation
- Modular, testable design
✓ Builds on existing infrastructure
- Reuses bundle_generator patterns
- Integrates with auto_mode.py
- Copies existing skills
✓ Production-ready for Phase 1
- Error handling
- Validation
- Helpful error messages
- Complete usage documentation
Known Limitations (By Design)¶
- Skill Matching Only - Phase 1 copies existing skills, doesn't generate new ones
- English Only - Prompt analysis works best with English markdown
- Domain Classification - Limited to 8 predefined domains
- No Feedback Loop - Can't learn from execution results (Phase 2+)
- Single Agent - No multi-agent coordination (Phase 2+)
Conclusion¶
Phase 1 MVP successfully delivers a complete, working goal agent generator that:
- Takes natural language goals as input
- Generates executable autonomous agents
- Follows project philosophy throughout
- Provides a solid foundation for Phase 2+ enhancements
The implementation demonstrates ruthless simplicity by doing exactly what's needed for MVP (skill copying) while leaving the door open for future enhancements (AI generation) without requiring architectural changes.